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SUMMARY

Sequential procedures are proposed for simultaneous estimation of the mean
vector and scalar multiplier of covariance matrix of a p-variate normal popu-
lation. Asymptotic behaviours of the procedures are studied.
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Introduction

Mukhopadhyay [2] developed sequential procedures for simultaneous
estimation of the mean and variance of a univariate normal population.
He constructed a semi-circular region of given maximum diameter, which
covers these parameters with prescribed confidence coefficient. Sequential

" point estimation procedure (the loss being quadratic) was also discussed.

In the present article, a multivariate extension of Mukhopadhyay’s
procedure is given. The population to be sampled is a p-variate normal
population N,.(p., o2I;), where ® is unknown mean vector, ¢* is unknown
scalar, and I, stands for a p X p identity matrix. Thus the. problem is to
estimate 6 = (i, o?)'. o L
" Let {X,}, i=1,2,...be asequence Of"independent random observa-
tions from N,,(p., czlp) Havmg recorded a sample (X, X, ..., Xn) Of
8ize n, deﬁne, forn > 2,

.in == n—l z X‘
i=1
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and
‘A’f’; = (p(n — 1))1 '§1 Xi — Xo)'(X; — Xn)
=

as the estimators for 1 and o2, respectively. It is easy to verify that these
estimators are unbiased and consistent for the corresponding parameters.
Moreover, the variance covariance matrix of X, is (c*/n)Ip and p(n — 1)
a2[o? is distributed as X2 with p(n — 1) degrees of freedom.

Given d, «(d > 0, 0 < « < 1), suppose one wishes to construct a semi-
circular region R, in p-dimensional Euclidean space such that P(6 € R,)
2 « and the diameter of R, is less than or equal to 2d. It is proposed

R, =1{Z=(a,b):56>0 and (Zn— Z)(Z, — Z) < d?,

where Z, = (Xn, 52)".
Now define a (p 4- 1) X (p + 1) positive definite matrix

6?I, 0
o=("y 2 )
0 2¢Yp

and A = max {¢% 20%/p}. It can be verified that the ellipsoid
Ri={Z=1(a,b):b>0 and XNZ,— Z)YONZn — Z) £ d%
is contained in Rn. Further,

PQ € RY) = PXa—p)(* L) HFn—p) + 204/p) X (52—0?? < d?/p}

1
=P{7xi+ n_lxg<d2/,\}

dz
> P{tn < 01} (LD
Let ‘@’ be any constant such that
POy S @) =« (1.2)

Itis clear from (1.1) and (1.2) that for o known, in order to achieve
P(ﬂ € R:) > «, the required sample size n is the smallest positive integer
greater than or equal to n*, where n* = 1 4 (a/d)%A.

However, in absence of any knowledge about o, no fixed-sample size
procedure serves the purpose. In such a situation adopt a sequential pro-
cedure which is discussed in the next section. :



Aas., givés 2.3).
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2. The Sequential Procedure

Let

~ a2l 0
On = 4
0 264p

and A, = max {62 204/p} The stopping rule is defined as follows.
The stopping time N = N(d) is the smallest positive integer n 2> m
(>2) such that

1> (anld)iAn + 1, 2.1)

where {an} n = 1, 2, . . . is a sequence of positive constants, converging
to ‘a’. When stop, construct Ry for 8.
Now establish the following theorem.

THEOREM 1. N is well-defined, non-decreasing as a function of d, and

lim N = oo a.s. (2.2)
d—-»0 .

. N ‘
}IXE}) ol 1a.s. (2.3)
lim E(—N?) =1 S
d->0 n

lim P(6 € Ry) > ¢ (2.5)
d»0 ~

Proof. Result (2.2) follows from the definition of N at (2.1).

Note the basic inequality

A — .
(fdi)2AN+1<N<(“‘“d l))w_1+1+m

or

()5 +—<%$(a"'l) L )

whi‘ch, along with (2.2), and the facts that lim ay = Q.a.s., lim AN =

—)m No>o
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Again note that

%= (=)t 5 (%~ Ky (% — Ko

<@E—1)7 5 (K= —p)

p(n—1)
U3

- p(n — 1) ]=2
where {U;}, j = 2, 3, .. . is a sequence of independent standard normal
- variates. Hence from the Wiener ergodic theorem (see, Wiener [6])

z U}
4 sup 22
| n>2 pln— 1)

has its fourth moment finite. Thus the expression on the right hand side
of N/n* in (2.6) is integrable and (2.3), together with dominated conver-

gence theorem provides (2.4).
It follows from a result of Anscombe [1] that as d — 0

(5% — o)* v

— , [ ot -1
&= (5 ) G0 + Boir—1)
has limiting distribution X* with (p + 1) degrees of freédom Thus,

lim P(® € Ry) > lim P8 € RY)
d»0 = d-»0 ~

> P{x?,ﬂ, <L - 1)} —

in view of (2.3).
Remark. Following Robbins [3] and Starr [4], one can derive sequential
procedures for simultaneous estimation of # and ¢? under the loss function

La(C) = (K — )X — 1) + (82 — 0®)? + Cin

where C is the known cost per unit observation. The value 7, of # which
minimizes the risk is (approximately) C-12 o (p + ¢2[2p)l'2, Since the
stopping rule and estimation rule are highly dependent, the technique of
Starr/Woodroofe [5] can be adopted to prove asymptotic risk-efficiency of
the procedure.
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